当前,我国制造业面临着异常严峻的挑战,在这种背景下,制造企业如何实现转型升级?推进智能制造成为重要的途径。然而,我国制造企业在推进智能制造过程中面临着诸多难点问题。
1、概念满天飞,技术一大堆
从“工业4.0”的热潮开始,智能制造、CPS、工业互联网(平台)、企业上云、工业APP、人工智能、工业大数据、数字工厂、数字经济、数字化转型、C2B(C2M)等概念接踵而至,对于大多数制造企业而言,可以说是眼花缭乱、无所适从。
智能制造涉及的技术非常多,例如云计算、边缘计算、RFID、工业机器人、机器视觉、立体仓库、AGV、虚拟现实/增强现实、三维打印/增材制造、工业安全、TSN(时间敏感网络)、深度学习、Digital twin、MBD、预测性维护......让企业目不暇接。这些技术看起来都很美,但如何应用,如何取得实效?很多企业还不得而知。
(相关资料图)
2、摸着石头过河
企业在推进智能制造过程中缺乏相关技术经验,目前,制造企业存在三种类型的孤岛,即信息孤岛、自动化孤岛、信息系统与自动化系统之间的孤岛。此外,许多企业缺乏统一的部门来系统规划和推进企业智能制造进程。在实际推进智能制造的过程中,企业也仍然是头痛医头,缺乏章法。
3、理想很丰满,现实很骨感
推进智能制造,前景很美好。但是绝大多数制造企业利润率很低,缺乏自主资金投入。一些国有企业和大型民营企业可以争取到各级政府的资金扶持,但大多数的中小企业只能“隔岸观火”,自力更生。企业在智能化转型升级过程中,大屏幕指挥中心是必须有的,大量采用机器人的自动化生产线是必须建的,MES系统更是必不可少的。但至于究竟能否取得实效,就只有企业“冷暖自知”。
4、自动化、数字化还是智能化?
在推进智能制造过程中,不少企业对于建立无人工厂、黑灯工厂跃跃欲试,认为这些就是智能工厂。而实际上,高度自动化是“工业3.0”的理念。
对于大批量生产的产品,国外优秀企业早已实现无人工厂。例如,日本FANUC全自动装配伺服电机,可以做到40秒生产一个产品,但其前提是生产的产品需要做到标准化、系列化,以及拥有面向自动化装配的设计,将需要用线缆进行插装的结构改为插座式的结构。
从技术和管理的角度来看,中国制造向中国智造转变还存在五大难点:
智能制造是基于新的物联网、大数据、云计算等数字化技术与先进制造技术的深度融合,贯穿于设计、供应、生产制造、服务等整个供应链制造、运营和管理环节。因此,智能制造包含两个系统工程,一个是智能制造技术(制造技术和信息技术)整合的系统工程,另一个是管理的系统工程。目前,这两个系统工程不仅是中国企业面临的问题,欧美企业也同样面临这个问题。 装备制造业仍然是瓶颈,跟不上智能制造发展的要求。智能制造最终还是要落到制造技术和装备上,虽然我国在互联网、物联网、大数据、云计算等数字化技术以及5G深入应用上处于优势地位,但在制造执行单元——机床方面,我国与欧美日相比还存在很大的差距。 基础数据平台深度开发不受控。企业要实现智能制造,需要MES和ERP等两个基础系统平台。而我国还没有相关自主研发的软件平台,系统平台要依赖于欧美,因此在深度定制开发上受到限制。 算法开发。智能制造需要基于数据并充分挖掘数据价值而实现自决策、自管理、自学习,从数据源采集、数据呈现、数据分析到自行诊断、自动反馈、自动调整控制,过程离不开算法开发。而算法开发是一个多元跨界和交叉学科的工作,既要求对业务有深入理解,又要求有IT技术思维。目前,我国在算法开发的资源上还存在很大差距。 管理和组织的变革。一方面,智能制造基于数据可实现端对端、信息充分共享、管理平台化,打破了企业原有金字塔管理体制结构。因此来自原有权力结构拥有者的变革阻力会很大,往往他们掌握了决策权,导致智能制造的资源投入不到位。另一方面,管理方式会因信息平台化而发生改变,个体和任务小团队的自管理、自决策机制会越来越普遍,但是,目前还没有找到比较好的组织管理方式及组织文化。基于以上原因,智能制造还有很长一段路需要走。其中有三点亟须创新和突破:
一是在技术上需要自主研发,突破装配和软件技术的瓶颈,同时关注整个生态链中的核心技术。
二是在管理上需要推动组织和管理的变革,以适应信息技术带来的管理变化。
三是在智能化道路上需要引入系统工程、顶层设计,才有可能实现制造技术、信息技术和组织管理三者的深度融合。